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I show that a model for the interaction of magnetic domains that includes a short range ferromagnetic and a
long range dipolar antiferromagnetic interaction reproduces very well many characteristic features of two-
dimensional magnetic domain patterns. In particular bubble and stripe phases are obtained, along with polygo-
nal and labyrinthine morphologies. In addition, two puzzling phenomena, namely, the so called “memory
effect” and the “topological melting” observed experimentally, are also qualitatively described. Very similar
phenomenology is found in the case in which the model is changed to be represented by the Swift-Hohenberg
equation driven by an external orienting field.
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I. INTRODUCTION

There is a surprisingly large number of systems that ex-
hibit macroscopic textures arising from microscopic interac-
tions [1]. To be concrete, I will take as a case of study that of
patterns in magnetic systems(magnetic garnets[2] or ferro-
fluids [3]), but many of the conclusions obtained can be di-
rectly applied to other systems, as for instance, the mixed
state of type I superconductors of slab geometry[4], and
Langmuir monolayers[5]. The phenomenology of these sys-
tems is qualitatively understood as appearing from the com-
petition of two effects: a short range rigidity, and a long
range(dipolar) interaction between the local magnetization
at different spatial positions. Calculations suggest[6] that the
ground state of the system consists of(i) a state of uniform
magnetization,(ii ) a hexagonal lattice of bubbles in a back-
ground with opposite magnetization, or(iii ) a phase with
alternating, parallel stripes of opposite magnetization. The
parameter controlling which of these three is actually the
ground state is the external magnetic field. However, in ex-
periments, upon variation of the external field, different
(typically metastable) flux configurations develop that origi-
nate in instabilities of the bubbles or the stripes. Most notice-
able, these metastable configurations include labyrinthine
phases of interpenetrating domains, and polygonal-like pat-
terns[1].

Model Hamiltonians that take into account the two rel-
evant energy scales have been used to reproduce most of the
elemental instabilities observed in experiments, in particular:
the elongation and “fingering” instability of bubbles[7], and
the undulation instability of stripes[8]. However, the much
richer behavior of the full system, appearing from complex
interaction effects in rather large spatial regions, has not been
studied in detail with this kind of models. In fact, it is not
known if these simple models contain all necessary ingredi-
ents to produce realistic magnetization patterns over large
spatial scales.

The main motivation of the present work is to present
large scale simulations using a model Hamiltonian to see
whether it can account for the full phenomenology and the
variety of morphologies observed. I claim that the answer is
positive. The simulations are able to reproduce, in particular,
two phenomena that have been observed in these systems

and have remained largely as puzzles, namely, the so called
“memory effect”[9] of some magnetic patterns, and the “to-
pological melting”[10] of an ordered lattice of bubbles.

II. DETAILS OF THE MODEL AND THE NUMERICAL
TECHNIQUE

The model I will use is not at all new(see [1,11] and
references therein). I will consider a scalar fieldfsr d defined
over thex-y plane. This variable will represent the magneti-
zation in the system, which in experiments is typically con-
strained(because of structural properties) to point perpen-
dicularly to the x-y plane. Then, experimentally, the
magnetizationf has a preference to take two different val-
ues, which without loss of generality I will assume to be ±1.
It will be convenient for the simulations to considerf as a
continuum variable and include in the Hamiltonian a local
term Hl that favors the valuesf= ±1. This term will be of
the form

Hl = a0E drS−
fsr d2

2
+

fsr d4

4
D − h0E dr fsr d s1d

and represents the simplest continuum field description of an
Ising variable. Note that a term describing the effect of an
external magnetic fieldh0 has already been included.

The other terms that will be included in the Hamiltonian
are the following. First, there is a rigidity termHrig of the
form

Hrig = b0E dr
u ¹ fsr du2

2
. s2d

This term(with positiveb0) discourages spatial variations of
f, and can be called “attractive,” in the sense that two re-
gions with a value off of plus (or minus) one, in a back-
ground of the opposite sign, tend to merge into a single one
to reduce the value of this term(in fact, in a description in
terms of an Ising variable on a lattice, this term maps onto a
ferromagnetic interaction between nearest neighbor sites).
The fact that our fundamental variablef is continuous rather
than discrete, and the existence of the gradient term, imply in
particular the existence of a natural width(of the order of
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Îb0/a0) for the interface between domains with positive and
negative magnetization. Choosing the parameters in such a
way that this width is a few times the discretization distance
in the simulation allows us to obtain a smooth interface be-
tween domains, which turns out to be very weakly pinned by
the underlying numerical mesh, and whose energy is almost
independent of its spatial orientation. These two facts are
crucial for a realistic simulation, and cannot be easily
achieved using an Ising variable that takes only two values
[13] (see, for instance, the attempts in[12]).

Second, there is a termHdip that models the dipolar inter-
actions, of the form

Hdip = g0E dr dr 8fsr dfsr 8dGsr ,r 8d s3d

where Gsr ,r 8d,1/ur −r 8u3 at long distances. At short dis-
tances, however, ther−3 behavior has to be cut off to avoid
divergences(in experiments, the cutoff distance is given
roughly by the thickness of the film). However, we can see
that the way in which the cutoff is done is not crucial for the
results. In fact, we will take advantage of the fact that the
two terms(2) and (3) can be compactly written in Fourier
space as

Hrig + Hdip = o
k

ufskdu2sb0k
2 + g0Gkd s4d

whereGk is the Fourier transform ofGsr ,0d. Thus, it is the
combinationsb0k

2+g0Gkd that will mostly determine the be-
havior of the system. Note that the short distance behavior of
G in real space is masked in Fourier space at largek by the
k2 term, and then is irrelevant. On the other hand, ther−3

behavior at long distances transforms into ak dependence of
the form

Gk→0 = a0 − a1uku. s5d

The constants can be exactly evaluated to be

a0 = 2pE
0

`

r dr Gsrd, s6d

a1 = 2p. s7d

The finite valuea0 of Gk at k=0 reflects the fact that the
interaction in real space is integrable(in spite of being some-
times called “long range”). Also note thata1 is independent
of the short distance behavior ofGsrd. The main features of
the interaction in Fourier space are the maximum with finite
derivative atk→0, and the minimum at a finite wave number
kmin,g0/b0. This minimum exists for any nonzerog0, indi-
cating that the effect of the dipolar interactions on large dis-
tances can never be neglected.

We have defined the energy function of the system, and
now the dynamics has to be introduced. Since in magnetic
systems the magnetization is a nonconserved order param-
eter, I will use the Allen-Cahn[14] dynamical equation,
namely,

] fsr d
] t

= − l
dsHl + Hrig + Hdipd

dfsr d

= − lFa0s− f + f3d − h0 − b0Df

+ g0E dr 8fsr 8dGsur − r 8udG , s8d

which represents an overdamped dynamics in which the sys-
tem reduces its energy by a steepest descent evolution. To
efficiently implement these equations on the computer, and
in order to avoid the direct evaluation of the integral in the
last term of Eq.(8), a pseudospectral method[15] is used. I
write the previous equation in Fourier space, namely,

] fk

] t
= − lfa0us− f + f3duk − h0dskd + sb0k

2 + g0Gkdfkg .

s9d

In this way, the last term is now algebraic. The complication
has been translated to the first term, which involves the
evaluation of the Fourier transform off3. However, this can
be done very efficiently by the use of standard fast-Fourier-
transform techniques.

In the simulations below, the functionG is defined in real
space to beGsr ,r 8d=1/ur −r 8u3 for any two points of the
numerical mesh such thatr Þ r 8, whereasGsr ,r d;0. Then
the cutoff distance is the lattice discretization. The Fourier
transform of this expression on the square lattice gives for
the relevant terms ofGk the form of Eq.(5) with a0.9.05,
a1=2p. Once the value ofa0 is fixed (and since the value of
a1 is universal), there are four independent coefficients in Eq.
(9). Two of them can be fixed by rescaling the spatial and
temporal coordinates. In fact, if we define a new field
f̃sr ,td;A−1fsr /C,t /Bd [and thenf̃kstd;A−1fCkst /Bd], and
in case we chooseA to be

A =Î1 +
a0g0sC − 1d

a0
, s10d

the new field satisfies equations of motion that in Fourier
space can be written as(the tilde in the new field has been
eliminated for simplicity)

] fk

] t
= ausf − f3duk + hdskd − sbk2 + gGkdfk , s11d

with

a ;
la0A

2

B
, s12d

h ;
lh0

AB
, s13d

b ;
lb0C

2

B
, s14d
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g ;
lg0C

B
, s15d

and whereGk is (up to the linear terms that are relevant for
our analysis) the same function as before, namely,Gk =a0
−a1uku with the samea0 anda1. This renormalization can be
used to fix two parameters in the new nondimensional equa-
tions (11). In the simulation presented below I fixedb
=2.0,g=0.19 and took the spatial discretization to be the
unit of length(this choice was convenient when implement-
ing the equations on the numerical mesh, and has no other
particular meaning). Therefore, we see that in addition to the
external control parameterh, a single internal control param-
eter a remains. This parameter regulates the possibility of
the field f to take values other than the most convenient
ones, namely,f= ±1. We will see below the different mor-
phologies that appear for different values ofa. From now on
I will always refer to the nondimensional form(11) of the
equations of motion.

Starting from an arbitrary initial condition, Eq.(11) de-
scribes an evolution in which the total energy of the system
Hl +Hrig+Hdip is steadily reduced until it reaches a minimum,
in which ]fk /]t is identically zero. We will see that typically
the true minimum of the system is not reached, but instead
one of many possible metastable states is obtained. The
simulations presented below were done on a 5123512 mesh
using periodic boundary conditions. The time integration of
the equations is done using a semi-implicit first order
method, in which thek2 term in Eq.(11) is evaluated in the
new time value. Concretely, I use an iteration scheme based
on the following discretized form of Eq.(11):

fk
t+dt − fk

t

dt
= uasf − f3duk

t + hdskd − gGkfk
t − bk2fk

t+dt.

s16d

This treatment of the diffusive term is standard to improve
the stability of the algorithm[16]. In all cases below the time
interval used isdt=0.5.

III. RESULTS

The initial condition for the variablef is taken to be
locally random in the interval −1,f,1, and the system is
evolved during an equilibration timetstart in the presence of a
fixed applied external fieldhstart. If hstart is too large, the
configuration obtained turns out to be a state of uniform
magnetization. However, for lowerhstart, a structure of
bubbles of the minority phase(with magnetization antiparal-
lel to the field) within a background of the opposite magne-
tization may be favored.

After the timetstart, the field is decreased as a function of
time with a finite ratedh/dt. This value is taken to be as
small as possible(within reasonable computing time) in or-
der that the field change can be considered to be adiabatic
(we will see that this cannot always be guaranteed due to the
existence in some cases of field driven instabilities). During
the evolution, different morphologies are observed for differ-
ent values ofa in Eq. (11), which will be described now.

A. Almost reversible interconversion of bubbles and stripes

For a=1.6, the result obtained is shown in Fig. 1. Starting
from the initial bubble phase, upon reduction of the fieldh,
neighbor bubbles coalesce, forming a striped pattern. When
the field becomes negative, the stripes destabilize, and sepa-
rate in a chain of bubbles, which have opposite magnetiza-
tion with respect to the original ones. The sequence of
bubble and stripe patterns is found to be reversible upon
cycling of the field. There is however a noticeable hysteresis
in the field value at which the bubble-stripe interconversion
occurs. This is just the consequence of the transition between
bubbles and stripes being first order[6].

B. From bubbles to rather isolated and wandering stripes

For a slightly larger value ofa, namely,a=1.8 (Fig. 2),
the bubbles may become unstable and elongate individually,
without merging with their neighbors at the beginning. When
they finally merge(for h&−0.025), regions with positive
magnetization generate wavy stripes of well defined thick-
ness. Contrary to the previous case, these regions do not
separate into “beads” when the field is made more negative,
but eventually retract back to a single spot of positive mag-
netization that eventually disappears.

C. Collapse of the bubbles to a polygonal pattern

For larger values ofa, the bubbles are seen to remain
(meta)stable down to a field where they start to merge with
their neighbors, but now in a sort of two-dimensional way, as
seen in Fig. 3 fora=2.2. This has to be compared with the
previous case where the initial collapse of bubbles was

FIG. 1. Evolution of the magnetization distribution upon reduc-
tion of the magnetic fieldh, for a=1.6. Other parameters aretstart

=3000, hstart=0.01, dh/dt=−5310−7 (see text). Here and in the
following figures black (white) indicates regions with positive
(negative) magnetization, all parameters are in the nondimensional
form corresponding to Eq.(11), and the system size is 5123512.
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mainly one dimensional, generating stripes(see the casesh
=−0.029 andh=−0.033 in Fig. 2). In the present case, the
collapse of neighbor bubbles seems to occur as a cascade
process, where some initial coalescences trigger the full tran-
sition of the lattice. In fact, in Fig. 4 the field was kept
constant at the valueh=−0.0465(corresponding to the last
panel in Fig. 3), and the evolution was followed as a function
of time. A coarsening process is occurring here. Actually, the
last pattern in Fig. 4 is not totally relaxed yet. Incidentally,
note in the last panel of Fig. 4 the existence of small pen-
tagonal bubbles, highlighted by the arrows. This structure
has been observed experimentally to be ubiquitous, and very
stable[10].

This case suggests the following interesting result: If a
perfect original pattern of bubbles is constructed by hand, it
can remain stable for values of the field at which the disor-
dered bubble system would have already collapsed. Now, if
in this ordered, metastable structure, a defect is introduced, it
can completely disorder the lattice. In fact, we see in Fig. 5
how the presence of the defect produces a sequence of insta-
bilities that destroy many of the walls between neighbor
bubbles, generating a rather well defined disordering front
that leaves behind a disordered structure with much lower
magnetization. This effect has been experimentally observed
and calledtopological melting[10] of the bubble lattice. It
has been observed to occur(although in a less dramatic
form) also for systems in which the long range interaction is
of Coulomb type[17].

FIG. 2. Same as Fig. 1 fora=1.8 ststart=1500, hstart

=0.03, dh/dt=−3310−6d.

FIG. 3. Same as Fig. 1 fora=2.2 ststart=4500, hstart

=0.03, dh/dt=−1310−6d.

FIG. 4. The final configuration if Fig. 3 evolved at constant field
h=−0.0465 as a function of time, as indicated(t=0 corresponds to
the last panel in Fig. 3). Arrows in the last panel highlight some
small pentagonal bubbles, a structure that appears ubiquitous both
in experiments and in the simulations.

FIG. 5. Topological melting of an order array of bubbles fora
=2.2, upon thead hoc inclusion of a defect in the middle of the
sample. The evolution occurs at a fixed value of the fieldh
=−0.05, as a function of the simulation time, as indicated.
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D. Labyrinthine patterns and the memory effect

If from the last panels in Fig. 2 or 4 the field is slowly
switched off, interesting results are obtained. In the case in
which we start from the configuration of the last panel in Fig.
2, which contains three(meta)stable spots of positive mag-
netization, they remain stable(increasing only slightly in
size) up to h,−0.02. At this field an instability occurs, the
bubbles becoming unstable. If we maintain the field fixed at
a value slightly lower(in absolute value) than the instability
value, we obtain the results presented in Fig. 6, which shows
snapshots as a function of time, for a fixed value of the field
h=−0.018. The bubbles elongate and successively branch,
forming labyrinthine patterns that invade the whole sample.
On the other hand, if the field that we apply is much beyond
the instability value(Fig. 7) the evolution is more rapid, and
with a larger degree of branching of the magnetic domains.
Note the difference in the degree of branching in the final
patterns of Figs. 6 and 7. The greater tendency to branching
when the applied field is more and more beyond the instabil-
ity value is well known experimentally and theoretically[7].
This kind of instability is also similar to that observed in
some reaction-diffusion systems[18].

If we reduce the absolute value of the field from a con-
figuration in which stripes are already present, we observe an
undulation transition[8] at a field with larger absolute value
than before. But contrary to what happened in Figs. 6 and 7,
if the field is changed slowly the system evolves smoothly
(no instability appears), and stripes do not branch. Positive
magnetization regions invade the system through wandering
of the stripes, but new branches do not appear or are very
rare.

In particular, in the case in which we reduce the field
starting from the last configuration in Fig. 4 in which stripes
are abundant as walls between polygons, the undulation oc-
curs mildly, with almost no breaking or reconnection of the
cell walls, and then the final labyrinthine pattern ath=0 is
topologically equivalent to the original one. This is shown in
Fig. 8. A nice consequence of this is that, when the field is
switched on again(last panels in Fig. 8), the original pattern
is almost recovered. This effect, called thememory effect[9]
has been observed experimentally, and the typical evolution
of the patterns over many cycles of the field has been ana-
lyzed. We see that this effect is contained in the simple
model Hamiltonian we are using.

IV. DISCUSSION AND CONCLUSIONS

Summarizing, in the preceding section I have shown how
the model equations(11) can be efficiently simulated in sys-
tems of reasonably large size. In this way, we have seen
emerging most of the phenomenology of two-dimensional
magnetic patterns and other similar systems. The success of
the present numerical simulations is due to a combination of
reasons, mainly, the use of a continuum variable instead of a
discrete one to obtain smooth domain walls between regions
with opposite values off, and the use of pseudospectral
techniques to evaluate efficiently the “long range” dipolar

FIG. 6. Time evolution of the pattern shown in the first panel
upon the application of a constant fieldsh=−0.018d slightly beyond
the critical field at which those bubbles destabilize. Times of the
snapshots are indicated.

FIG. 7. Same as Fig. 6 forh=0, i.e., here the system is brought
deeply inside the instability region. Note the much larger amount of
stripe branching in the final(stable) pattern, and the shorter time
scale as compared with the previous figure.

FIG. 8. Reducing the field from the final configuration in Fig. 4
down to h=0 and back to its original valuesudh/dtu=1310−6d.
Note the “memory” of the pattern in comparing first and last panels.
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force. These facts combine to allow a realistic simulation of
domain patterns that show many of the features observed in
experimental realizations. In particular, the memory effect
[9] and the topological melting[10] of the system are very
well reproduced.

I want to emphasize that in all cases I have studied, the
evaluation of the total energy of the system is compatible
with the fact that the only patterns truly corresponding to the
ground state of the system are(i) a pattern with uniform
magnetization if the field is strong enough,(ii ) a regular
bubble phase for intermediate fields, and(iii ) a regular stripe
phase for low(including zero) field. Although this is not a
demonstration that they are the only possible ground states, it
points in this direction, and it is in agreement with the results
of theoretical studies[6]. The other patterns observed(laby-
rinthine, polygonal, etc.) are seen to be metastable, and they
are originated in the particular cycling of the field(and in the
initial conditions) to which the sample is subjected. A recent
experimental study[19] has shown in fact how the labyrin-
thine patterns converge to parallel stripes upon relaxation.

Very different morphologies have been observed when the
parametera in Eq. (11) is changed. Figures 3, 4, and 8(cor-
responding to the largest values ofa) compare very well
with the patterns observed in magnetic garnets and ferroflu-
ids (see [1,10,11]). The results for lowera (in particular,
Figs. 1 and 2) are more akin to Langmuir monolayers[5] and
flux structures in type I superconductors[4]. This suggests
that in real systems the possibility of the order parameter to
take values different from the two preferred ones can notice-
ably influence the physical properties.

I want to mention here that the present model can also be
efficiently used to study the effect of quenched disorder in
the system, and the effect of thermal fluctuations. Prelimi-
nary results indicate that the model generates hysteresis
curves and magnetization patterns that, as a function of the
amount of disorder, compare very well with experimental
ones[20]. These results will be published separately.

We have seen that in the present model the dynamics is
controlled by an interaction function ink space that has a
maximum with finite derivative atk→0 and a minimum at a
finite kmin value. It is worth comparing this case with respect

to other possibilities. One is the case in which the fieldf is
considered to be charged, instead of carrying a dipole. Two
cases can be considered. One is that of true three-
dimensional chargesfGsrd, r−1g and the other is the case of
two-dimensional chargesfGsrd,−lnsrdg. In both cases, the
interaction ink space gets a divergence at lowk. This model
has been studied in detail in[17] (see the references there for
realizations of this case). There, instabilities of a single
bubble have been found which are similar to those I find in
the dipolar system. It remains to be seen if the other effects
described here are also present in Coulombic systems.

Another case to compare with is that of interactions de-
caying in real space more rapidly thanr−3. In this case, ak
space interaction with a quadratic maximum atk=0 is ob-
tained. If this maximum dominates over the quadratic mini-
mum coming from theDf term in Eq.(8), then the effective
interaction has a quadratic maximum at the origin and a
minimum at some finitekmin. This case corresponds qualita-
tively to the interaction considered in the Swift-Hohenberg
equation[21]. For this interaction, and controlling the same
parametera as I did here, I have obtained basically all the
effects and morphologies described in the previous section.
On one hand this tells us that the singularity atk=0 of the
dipolar interaction is not crucial in obtaining these effects, a
quadratic maximum suffices. On the other hand it is a bit
surprising that in the wide literature related to the Swift-
Hohenberg equation these effects have not been described
previously. This might be due to the fact that the Swift-
Hohenberg equation is usually considered in the absence of a
“magnetic-field-like” term that favors one of the two orien-
tations, and this term is crucial to obtain the metastable pat-
terns. It is then likely that the much studied relaxation to
equilibrium properties of the patterns seen in the Swift-
Hohenberg equation and the coarsening properties of the
magnetic patterns(studied, for instance, in[9]) can be put
under the same framework. I hope the present work encour-
ages some studies in this direction.
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